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A blunt body located in a supersonic two-phase stream consisting of a gas and large solid 
particles is heated intensely by collisions and convective heat exchange, which can be several 
times greater than convective heat exchange in the same flow without particles [i, 2]. 

Following the theoretical and experimental results of [1-6], the present study will pro- 
pose relationships permitting calculation of convective thermal fluxes at the critical point 
and their distribution over the surface of the body over which a supersonic two-phase jet 
with large solid particles flows. Heat exchange in a supersonic jet with fine particles was 
considered in [7]. 

i. We must first consider possible mechanisms for the increase in convective heat ex- 
change between the blunt body and the supersonic two-phase jet. It is interesting to consider 
the effect on convective heat exchange of the fluid cone formed by particles broken off from 
the body and the accompanying vortex, departing from the shock layer near the body into the 
supersonic flow region near the flow critical line. A conical shock wave develops in such a 
fluid cone [8]. 

In this case the interaction of shock waves around the body and on the fluid cone can 
affect convective heat exchange. According to [9], the thermal flux into the body in the 
region of shock wave collision changes in proportion to the square root of the pressure. At 
the body critical point the collision of these waves has little effect on heat exchange in 
light of the small pressure change, which according to the experiments of [8] is even de- 
creased by -30% as compared to a flow without particles. The effect of the fluid cone upon 
heat exchange is attenuated still more by the fact that the time of existence of such a cone 
is significantly less than the duration of the interaction of the two-phase flow with the 
body, being 10-20% of the latter according to the measurements of [I]. 

In analogy to experiments on blunt bodies with a needle [I0] the fluid cone usually 
formed near the body critical line should shift the thermal flux maximum from the critical 
point to the side surface of the body and decrease the thermal flux to the critical point as 
compared to flow over the body of the same supersonic stream without particles. However, 
according to the experiments of [i, 2] these effects are not observed, Thus the effect of 
fluid cones on convective heat exchange can be neglected. 

We will propose the following explanation of elevated convective heat exchange in flow 
of a two-phase stream over a body. Particles or their fragments recoiling up the flow from 
the body reach the flow shock wave, which as was shown above, intersects a small quantity of 
particles forming fluid cones. A significantly larger fraction of recoiling particles 
reaches the shock wave, but because of the abrupt increase in resistance force in the free 
supersonic jet the wave is only slightly deformed, generating toroidal vortices [8]. These 
vortices move along gas flow lines to the body in a manner similar to a particle-free super- 
sonic jet turbulent at infinity flowing over a body [3, 6]. 

For thermal calculations we will use gas parameters at the outer edge of the boundary 
layer the same as in the absence of particles, since according to [2], the effect of large 
particles on the gas can be neglected~ Gas and particle flow lines at infinity are assumed 
parallel. 

A particle will be termed large if the condition 

Dr ~ 3~pvA2 /(89~ut,| (t.  1) 

Moscow. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 106- 
112, September-October, 1993. Original article submitted July 27, 1992. 

694 0021-8944/93/3405-0694512.50 �9 1994 Plenum Publishing Corporation 



is satisfied, indicating that the particle deviates from its initial direction by not more 
than the amount 61 after tranversing a layer of thickness A. Here p and v are the gas den- 
sity and velocity in this layer, perpendicular to the particle velocity Up~ at infinity; 61 
is the critical value of the large particle deviation, taken equal to A; and DD, Ps, CD are 
the diameter, density, and resistance coefficient of the particle. Inequality-(l.:~) was 
obtained from the equation of particle motion for constant values p, v, c D and the condition 
Up~ >> V .  

In the shock layer near the axis of flow symmetry, according to [ii], we have 

u/u~ = 0.4k(b + 2b0)/A, ( 1 . 2 )  

where  t h e  v e l o c i t y  v a c r o s s  t h e  a x i s  i s  a v e r a g e d  o v e r  t h e  d i s t a n c e  6 o f  p a r t i c l e  d e v i a t i o n  
in  a s h o c k  l a y e r  o f  t h i c k n e s s  h; 60 i s  t h e  d i s t a n c e  o f  t h e  p a r t i c l e  f rom t h e  a x i s  o f  symmet ry  
a t  i n f i n i t y ;  and u~ i s  t h e  gas  v e l o c i t y  a t  i n f i n i t y ;  k = p=/p  (0~, P b e i n g  t h e  g a s  d e n s i t y  
a h e a d  o f  and b e h i n d  t h e  d i r e c t  s h o c k  w a v e ) .  With  c o n s i d e r a t i o n  o f  Eq. ( 1 . 2 )  and  t h e  e q u a l i t y  
Up~ = u~ ,  Eq. ( 1 . 1 )  t a k e s  on t h e  fo rm 

D r ~ 0.15 (b~+ 26o)~p~A/(~b,)  (1.3) 

for the same condition 6 1 = ~, while for Eqs. (I.I), (1.3) we can use the relationship c D = i, 
valid for a particle moving in a gas with supersonic velocity. 

2. In light of the fact that heat exchange in a turbulent boundary layer does not de- 
pend upon the mechanism underlying development of disturbances outside the layer ~hich impinge 
on its outer boundary and support the turbulent regime within, we will make use here of the 
results of [3, 6] to explain heat exchange between the body and the flow. Those studies con- 
sidered heat exchange for flow over a body of jet turbulent at infinity. 

It was shown theoretically in [3] that the thermal flux to the critical point of a 
planar (v = 0) or axisymmetric (v = i) body in a perturbed supersonic jet increases with 
increase in the dimensionless turbulent energy Q, which has the form 

Q = 12Q,; (2 .  l) 

2 
1 , 5  �9 pou~ 

1 + '~ ~.0 (Ou/OI)o 

( 2 . 2 )  

where 12 = (u'/u~)2; u' is the intensity of turbulence and velocity pulsation at t:he outer 
limit of the boundary layer; Ql is the dimensionless turbulent energy at 12 = i; and P0, ~0, 
p~, i 0, (8u/8s 0 are the density, viscosity, pressure, total enthalpy, and velocity gradient 
at the body critical point. 

We will describe the theoretical dependence proposed in [3] for relative heat exchange 
H = ~0/ao at the critical point upon the parameter Q of Eq. (2.1) by the approximate p 
expression 

I I ,  Q ~ 275, ( 2 . 3 )  
H = [0,185Q ~ Q > 275, 

which is close to the approximations used in [4, 5]. Here a~, a ~ !s are convective heat ex- 

change coefficients at the critical point of the body flowed over by a superonic jet 
without and with particles for one and the same gas parameters at infinity. According to 

0 [6], as can be written in the form 

~ = 0,517 (1 + ~)~ P~-~'~ (p~)~ O. /aO~,  ( 2 . 4 )  
p,, = p(p0,  r0), ~o = ~  (m ~, ~), ~ = 0,5 (~ + ~ ) ,  

where  iwo , i~  a r e  t h e  e n t h a l p y  a t  t h e  w a l l  t e m p e r a t u r e  and  t h e  e f f e c t i v e  E c k e r t  e n t h a l p y  a t  
t h e  c r i t i c a l  p o i n t ;  and s i s  t h e  a r c  l e n g t h  a l o n g  t h e  body  c o n t o u r  w i t h  o r i g i n  a t  t h e  c r i t i c a l  
p o i n t ;  Pr  i s  t h e  P r a n d t l  number .  E q u a t i o n  ( 2 . 4 )  c o i n c i d e s  w e l l  w i t h  t h e  e x p r e s s i o n  o f  Fay 
and R i d d e l l  [ 1 2 ] .  
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TABLE 1 

Q.1O -3 

0,1 
0,275 
0,50 

I 

2 
4 

6 
8 
I0 

H from 
Hfrom [3] Eq. (2.3) 

I,II I 

1,21 I 

t,38 1,[9 
1,59 1.47 
1,88 1.8~ 
2,25 2.23 
253 2.52 
2,74 2,74 
2.93 2,93 

A comparison of the results of [3] with calculations by Eq. (2.3) is shown in Table I, 
whence it is evident that the accuracy of the approximation increases with increase in the 
parameter Q. 

Note that according to [3] the quantity H depends weakly on the temperature factor 
iw0/i0: ! its change over the range 0.i ~ iw0/i 0 ~ 0.9 does not exceed 6% with respect to 

H for iw0/i01 = 0.5, which was used in composing Table i. 

To calculate thermal fluxes with Eqs. (2.1), (2.3) it is necessary to determine the 
turbulence intensity 12. Expressions were presented in [4, 5] for this quantity, applicable 
to flow of a supersonic dusty jet over a sphere. However we can take a more general expres- 
sion for 12, applicable to spheres and end faces, if we use the relationship for the heat 
exchange coefficient at the critical point from [i], which was obtained to an accuracy of 
25% mean square deviation by statistical processing of a large number of experiments in- 
volving heat exchange on spheres and end faces flowed over by dusty supersonic jets: 

o o j l ,  ~ < ~ o ,  ( 2 . 5 )  
H = %/a,  = [0,098 (p=u~/a~) (th z)oj~7, ~ > Zo; 

= ~ = ~ |  (1 + G)/(p=u| ~o = (O, ISkP?/3 (~5)  -3'~ss. 
( 2 . 6 )  

p~ ,  pp~ a r e  t h e  g a s  Here X is a parameter characterizing the dust concentration in the jet, 

and particle densities at infinity; G = Ger/(Pp~, Ups), Ger are the relative and absolute 

erosion losses of material per unit body surface near the critical point; and Ql is calcu- 

lated with Eq. (2.2). According to [13], the material loss G can be defined in the form 

a = 0 . 5 ~ J H o . ,  

where Her is the erosion enthalpy equal to the kinetic energy of particles colliding normally 

with the body surface required for erosion removal of a unit mass of material from the body 
surface. The quantity Her can be obtained from experiment (for example, for graphite 
Her = 300 kJ/kg). 

Equation (2.5) differs from [i] in the replacement of X by tanh X, which for low jet 
dustiness (X << !) does not affect the result (tanh X = X), while for high dustiness it im- 
poses a reasonable limit on the heat exchange coefficient. Roughness was neglected in Eq. 
(2.5), since its effect on heat exchange does not depart beyond the error range given in 
Eq. (3.3) below. 

From IEqs. (2.3) and (2.5) for turbulence intensity we obtain 

12 = (0,34/0,7S~.67,,) k3.33 p ? n  Q?~7 (th Z)~'% ( 2 . 7 )  

I n  d e r i v i n g  E q s .  ( 2 . 6 ) ,  ( 2 . 7 )  t h e  r e l a t i o n s h i p s  
$ * 

Po = 9o/0,75, ~0 = 0,75"~0 ( 2 . 8 )  

w e r e  u s e d  w i t h  i w o / i  o = 0 . 5  a n d  g a s  v i s c o s i t y  i n  t h e  f o r m  ~o = P ~ ( i o / i ~ )  n ( f o r  a i r  n = 0 . 7 ,  

f o r  a c o n s t a n t  v i s c o s i t y  g a s  n = 0 ) .  
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Equation (2.5) was tested for spheres and end faces by variation of the two-p]hase jet 
parameters over the ranges 6 ~ M S I0, 4"105 J Re~ I ~ 6-107 m -I, 750 S Up~ S 1700 m/see, 

0.05 S pp~Up~ ~ 0.5 kg/(m2-sec) (Re~1, M~ are the Reynolds number at unit length and Mach 

number for the gas jet at infinity). 

The expressions described above make use of velocity gradients at the critical point, 
which according to [14, 15] for a sphere and end face have the forms 

(Ou/O~o = v r ~ u ~ / R o ,  (OU/O0o = O~44~'~u~/Ro 

(R 0 is the radius of the sphere or end face). 

With consideration of Eqs. (2.1), (2.2), (2.4) and (2.8), Eq. (2.3) transforms in the 
following manner: 

I ~ ,  Q ~ 275, 

a ~ = [ ~ ,  Q > 2 7 5 ;  

( 2 . 9 )  

(2.1o) 

c~ ~ = 0 ,517  (1 + v) ~ TM -2/3 * * r r  poU~ Oto (Ou/oOo/(p~u~))~ 

ct ~ = 0,093,1 ( I / k )  ~ ( t  + v) ~ er-2/39~u~ ( ~  (Ou/Ol)o/(p~u~)) ~ 

(2.11) 

(2.12) 

where u I is the gas velocity immediately behind the incident shock wave; j = s p .  Equation 
(2.11) is analogous to Eq. (2.4). 

It is interesting to compare Eq. (2.12) with the heat exchange coefficient ~0 found in 
[6] at the so-called turbulent critical point of a body upon which a supersonic turbulent 
jet impinges: 

s ~ = c (~ t~ /~ )  ~ ( t  + v)~ 2 er-~ ( ~  (Ou/OOo/(p~u~)) ~ ( 2 . 1 3 )  

(c is an experimentally determined coefficient). Equation (2.13) was obtained by the integral 
relationship method using a local heat exchange law. Equations (2.12) and (2.13), derived by 
other methods, will be equivalent if we neglect the difference between the terms Pr-2/3 and 
Pr -~ and considering Eq. (2.8) write c in the form c = O.105(I/k) ~ 

Thus, convective thermal flux at the body's critical point for low Q values (Q ! 275) 
are defined by the laminar heat exchange regime of Eq. (2.11), while for high Q (Q > 275), 
the turbulent critical point (TCP) regime of Eq. (2.13) is valid. 

It is interesting that according to [6], the heat exchange coefficient along the body 
directrix for the laminar regime (j = s and the TCP regime (j = p) obeys a laminar heat 
exchange law which can be written as 

~ j / ~  = [2 (1 + ~) ~o~ (6u/oOo "-~ ' ~p . . . .  ~ u:x3  " 

xj = f ~ d x /  4 ,  J =  4 p, 
0 

Lt = p*ult*R 2" (it - i,~) 2, Lp = p*u~*R 2~ (i, - i.,) TM (10 - i~) 0'7~, 

= ~,), ~, (p, t, ), P 9 (P, ~, = 

4* = 0 ,5  (i + i~,) + 0 ,22 (4 - i), 4 = i + 0 ,5  v'-PTu 2, 

q, = or, (4 - i~,), qp = c~p (it - i.,)o.625 (io - g~.) ~ 

(2.14) 

where x is the coordinate along the body directrix with origin at the critical point; u, i, p 
are the velocity, enthalpy, and pressure at the outer limit of the boundary layer; iz* and is 
are the defining Eckert enthalpy and the reestablishment enthalpy; R is the body radius, and 
qs qp are thermal fluxes. 

As is evident from Eq. (2.14) the distributions ~s and ~p/e~ are close to each other, 

although the quantities =0 and ~0 may differ by a factor of several times according to Eqs. s p 
(2.11), (2.12). 
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For comparison with experiment the turbulent heat exchange coefficient =t will be 

needed, which according to [6] has the form 

% 0,0296 Pr-~ (p 'u)  ~ * o2 ( ~ / x , )  , q ~ = % ( ~ - k , ) ,  

x~ = ~f L t d x / L , ,  Lt = p*u (l-t*) ~ R uS" (% - i~) uS ,  i~ = i + 0 , 5  Prl/3u ~, 
0 

p = ~ (p,  ,, ) ,  ~ = ,  (p, ~*), ,;" = 0 ,5  (i + i,~) + 0 , 2 2  (~, - i) 

( 2 . 1 5 )  

and is equal to zero at the critical point in contrast to Eq. (2.12) (qt is the turbulent 
thermal flux). 

3. Calculations with the expressions presented above were compared to the experiments 
of [2] on relative heat exchange coefficients ~j/a~ (j = s p) and Stanton number 

S% = ~ / ( p = u ~ ) ,  l = Z, p, t. ( 3 . 1 )  

In [2] the thermal flux distribution was measured on a tantalum sphere of diameter D = 
76.2 mm over the central angle range 0 ! 8 ! 60~ within an air two-phase flow with M~ = 1.6 
and Re~ = 1.88"106 , calculated with jet parameters at infinity and dimension D. The jet 
with braking temperature of 820 K contained silicon carbide (Ps = 3400 kg/m 3) particles i00 

in diameter with concentration X = 7-3"10-4 according to Eq. (2.6) at G = 0, so that ero- 
sion in the case considered may be neglected. The kinetic energy flux of particles incident 
on the sphere qpk = 12.1 kcal/(ma'sec). These data allow a complete calculation of incident 
jet parameters. 

In evaluating the contribution of particle kinetic energy to the thermal flux [2] did 
not consider the angle ~ at which they contacted the sphere surface. A correction to the 
experimental results of [2] was introduced with the expression 

St = St9o + ak '+k(1-s in~)  (3.2) 
p ~ u ~ ( i l _ i w  ) " 

Here Stg0 is the experimental Stanton number for ~ = 90 ~ , a k is the particle kinetic energy 
accon~nodation coefficient, which is taken equal to 0.7 and 0.3, respectively, for erosion- 
stable and erosion-unstable materials [5] (for tantalum a k = 0.7); b is an exponent equal to 
1 or 3; qpk = 0"5ppwU~w (Pp~, Upw are the particle density and velocity near the sphere 

surface). 

The change in particle parameters in the sphere shock layer can be neglected, since 
according to Eq. (1.3) upon traversal of the shock layer the trajectory of a particle 10 ram 
distant from the flow axis deviates from its initial direction by an amount 61E 0.01 ram, 

while its velocity changes by ~2% according to the expressions of [13]. Therefore, in Eq. 
(3.2) we may take ~ = 90 ~ - O, qpk = 0"SppwU~w" 

The distribution of theoretical relative heat exchange coefficients over the sphere as 
calculated by Eq. (2.14) is shown in Fig. 1 by curves 1 and 2 for j = p and j = s which 
differ only slightly, as was indicated above in considering Eq. (2.14). Those curves agree 
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well with experimental curves 3 and 4, processed with Eq. (3.2) for b = 3 and 1 respectively, 
with the best agreement occurring for curve 3, i.e., for an inelastic interaction of particle 
and body, where that portion of their kinetic energy related to the particle velocity compo- 
nent normal to the body is absorbed. 

To complete the picture Fig. 2 shows absolute heat exchange coefficients over the 
sphere, expressed in terms of the Stanton number for the same experimental conditions. Curve 
i, characterizing heat exchange in a two-phase jet in terms of Stp and calculated with Eq. 
(3.1) with consideration of Eqs. (2.14), (2.12), (2.7), (2.6) for G = 0, changes in a manner 
similar to experimental points 5 and 6, processed with Eq. (3.2) for b = 3 and 1 respectively, 
differing from them at the critical point, for example, by ~11%. This disagreement is under- 
standable if we consider that the accuracy of approximation (2.5) is ~25%. 

For comparison the turbulent Stanton number St t obtained from Eqs. (3.1), (2.15) is 
shown in Fig. 2 by line 2, with which curve 1 should coincide after transition of the TCP 
regime to turbulent far from the critical point. However, the condition for such a transition 
was not considered in the present study. 

The calculation of the laminar Stanton number Sts with Eqs. (3.1), (2.14), (12.11) shown 
by line 4 of Fig. 2 differs from the experimental points 7 due to neglect of the effect of 
sphere roughness. The increase in heat exchange at the body critical point due to sphere 
surface roughness can be evaluated with the expressions of [5] 

O- -  0 0 0 , . ct, lc~z = 0,2rl  ~ rl /> 56; c~,/c~, = 1, ~1 < 56, 

q = (p~tlo~Ref/~o) ~ h , / O  o, R~f = vr2-ku~/(3u/3I)o,  

Oo = 0 ,343  gJpO 1 - 0 , 2 8 6 7 o  , 

(3~ 

where s ~ is the heat exchange coefficient at the critical point with consideration of rough- r 
ness; h r is the mean height of roughness projections on the body surface; Ref , %o are the 
effective radius and momentum loss thickness at the body critical point; and (3u/3~) 0 is the 
velocity gradient defined by Eq. (2.9). The results of calculations with Eq. (3.3) agree 
well with [16] for N ~ 103 

The value of Str, calculated with Eqs. (3.1), (2.14) for j = r with consideration of 
roughness by Eq. (3.3) for h r = 0.09 mm is shown by curve 3 of Fig.~ 2, which agrees well with 
experimental points 7. 

It is evident from comparison of curves i, 3, 4 that the effect of surfce roughness on 
heat exchange can be neglected in comparison to the effect produced by presence of particles 
in the jet, as was noted above. 
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GENERAL SOLUTIONS AND REDUCTION OF A SYSTEM OF 

EQUATIONS OF THE LINEAR THEORY OF ELASTICITY TO DIAGONAL FORM 

N. I. Ostrosablin UDC 539.3,517.958 

Numerous attempts have been made [i-ii] to represent stresses or displacements in terms 
of arbitrary independent functions (for example, harmonic and biharmonic functions) in such 
a way that the equations of elasticity theory are satisfied identically. We call such repre- 
sentations general solutions. However, up to the present, there has been no single approach 
to the construction of general solutions, in the present paper we present a method which 
makes it possible to reduce, in certain cases, a system of differential equations (of 
linear elasticity theory) with constant coefficients to a simpler system; in particular, to 
a diagonal system. Moreover, the transformation inverse to the initial system is specified 
by a transposed or conjugate matrix. Expressions are also obtained for the production of 
new solutions (operators of symmetry in the sense of group analysis), starting from some 
concrete solution. The idea of the method is presented briefly in [12]. Explicit formulas 
are presented for isotropic and transversally isotropic materials, and completeness and 
generality of the Papkovich-Neiber solution is shown. 

The equations of elasticity theory, in the presence of arbitrary anisotropy and the 
absence of volume forces, have the following form [7] in Cartesian orthogonal coordinates 
El, X 2, X3: 

L ~  = O, &J = 4~ = A . ~ , . ~ ,  - p~.., (1) 

where uj is the displacement vector; Ai(ks = (Aiks + Ais Aiks is a constant tensor 

of elastic moduli; p is the constant density of the material; 8 i. is the Kronecker symbol; 
8 k indicates differentiation with respect to the coordinate Xk; ~nd 8 indicates differen- 

tiation with respect to the time; repeated subscripts indicate summation. Properties of the 
coefficients Ai(ks were studied in [13-15]. 

We assume that the matrix L of the operators in relations (i) is similar [16] to some 
matrix D, i.e., a nondegenerate matrix T exists such that 

L T  = TD.  (2) 

Since L' = L and we assume that D' = D, then from Eq. (2) we obtain 

T ' L  = D T '  (3) 
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